Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Junction formation by Zn(O,S) sputtering yields CIGSe-based cells with efficiencies exceeding 18%

Identifieur interne : 000082 ( Main/Repository ); précédent : 000081; suivant : 000083

Junction formation by Zn(O,S) sputtering yields CIGSe-based cells with efficiencies exceeding 18%

Auteurs : RBID : Pascal:14-0038063

Descripteurs français

English descriptors

Abstract

In an effort to reduce the complexity and associated production costs of Cu(In,Ga)Se2 (CIGSe)-based solar cells, the commonly used sputtered undoped ZnO layer has been modified to eliminate the requirement for a dedicated buffer layer. After replacing the ZnO target with a mixed ZnO/ZnS target, efficient solar cells could be prepared by sputtering directly onto the as-grown CIGSe surface. This approach has now been tested with high-quality lab-scale glass/Mo/CIGSe substrates. An efficiency of 18.3% has been independently confirmed without any post-deposition annealing or light soaking.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0038063

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Junction formation by Zn(O,S) sputtering yields CIGSe-based cells with efficiencies exceeding 18%</title>
<author>
<name sortKey="Klenk, Reiner" uniqKey="Klenk R">Reiner Klenk</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Helmholtz-Zentrum-Berlin für Materialien und Energie, Hahn-Meitner-Platz 1</s1>
<s2>14109 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Steigert, Alexander" uniqKey="Steigert A">Alexander Steigert</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Helmholtz-Zentrum-Berlin für Materialien und Energie, Hahn-Meitner-Platz 1</s1>
<s2>14109 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rissom, Thorsten" uniqKey="Rissom T">Thorsten Rissom</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Helmholtz-Zentrum-Berlin für Materialien und Energie, Hahn-Meitner-Platz 1</s1>
<s2>14109 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Greiner, Dieter" uniqKey="Greiner D">Dieter Greiner</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Helmholtz-Zentrum-Berlin für Materialien und Energie, Hahn-Meitner-Platz 1</s1>
<s2>14109 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kaufmann, Christian A" uniqKey="Kaufmann C">Christian A. Kaufmann</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Helmholtz-Zentrum-Berlin für Materialien und Energie, Hahn-Meitner-Platz 1</s1>
<s2>14109 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Unold, Thomas" uniqKey="Unold T">Thomas Unold</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Helmholtz-Zentrum-Berlin für Materialien und Energie, Hahn-Meitner-Platz 1</s1>
<s2>14109 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lux Steiner, Martha Ch" uniqKey="Lux Steiner M">Martha Ch. Lux-Steiner</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Helmholtz-Zentrum-Berlin für Materialien und Energie, Hahn-Meitner-Platz 1</s1>
<s2>14109 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0038063</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0038063 INIST</idno>
<idno type="RBID">Pascal:14-0038063</idno>
<idno type="wicri:Area/Main/Corpus">000199</idno>
<idno type="wicri:Area/Main/Repository">000082</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1062-7995</idno>
<title level="j" type="abbreviated">Prog. photovolt. : (Print)</title>
<title level="j" type="main">Progress in photovoltaics : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Annealing</term>
<term>Buffer layer</term>
<term>Buffer system</term>
<term>Conversion rate</term>
<term>Copper</term>
<term>Copper selenides</term>
<term>Gallium selenides</term>
<term>Glass</term>
<term>Heterojunction</term>
<term>Illumination</term>
<term>Indium selenides</term>
<term>Molybdenum</term>
<term>Performance evaluation</term>
<term>Production cost</term>
<term>Quaternary compound</term>
<term>Solar cell</term>
<term>Thin film</term>
<term>Zinc</term>
<term>Zinc oxide</term>
<term>Zinc sulfide</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Taux conversion</term>
<term>Coût production</term>
<term>Cellule solaire</term>
<term>Couche tampon</term>
<term>Evaluation performance</term>
<term>Recuit</term>
<term>Eclairement</term>
<term>Hétérojonction</term>
<term>Système tampon</term>
<term>Zinc</term>
<term>Séléniure d'indium</term>
<term>Séléniure de cuivre</term>
<term>Séléniure de gallium</term>
<term>Composé quaternaire</term>
<term>Oxyde de zinc</term>
<term>Sulfure de zinc</term>
<term>Verre</term>
<term>Molybdène</term>
<term>Cuivre</term>
<term>Couche mince</term>
<term>Cu(In,Ga)Se2</term>
<term>ZnO</term>
<term>ZnS</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Zinc</term>
<term>Verre</term>
<term>Molybdène</term>
<term>Cuivre</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In an effort to reduce the complexity and associated production costs of Cu(In,Ga)Se
<sub>2</sub>
(CIGSe)-based solar cells, the commonly used sputtered undoped ZnO layer has been modified to eliminate the requirement for a dedicated buffer layer. After replacing the ZnO target with a mixed ZnO/ZnS target, efficient solar cells could be prepared by sputtering directly onto the as-grown CIGSe surface. This approach has now been tested with high-quality lab-scale glass/Mo/CIGSe substrates. An efficiency of 18.3% has been independently confirmed without any post-deposition annealing or light soaking.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1062-7995</s0>
</fA01>
<fA03 i2="1">
<s0>Prog. photovolt. : (Print)</s0>
</fA03>
<fA05>
<s2>22</s2>
</fA05>
<fA06>
<s2>2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Junction formation by Zn(O,S) sputtering yields CIGSe-based cells with efficiencies exceeding 18%</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>KLENK (Reiner)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>STEIGERT (Alexander)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>RISSOM (Thorsten)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>GREINER (Dieter)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>KAUFMANN (Christian A.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>UNOLD (Thomas)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>LUX-STEINER (Martha Ch.)</s1>
</fA11>
<fA14 i1="01">
<s1>Helmholtz-Zentrum-Berlin für Materialien und Energie, Hahn-Meitner-Platz 1</s1>
<s2>14109 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA20>
<s1>161-165</s1>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>26755</s2>
<s5>354000500776930020</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>17 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0038063</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Progress in photovoltaics : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In an effort to reduce the complexity and associated production costs of Cu(In,Ga)Se
<sub>2</sub>
(CIGSe)-based solar cells, the commonly used sputtered undoped ZnO layer has been modified to eliminate the requirement for a dedicated buffer layer. After replacing the ZnO target with a mixed ZnO/ZnS target, efficient solar cells could be prepared by sputtering directly onto the as-grown CIGSe surface. This approach has now been tested with high-quality lab-scale glass/Mo/CIGSe substrates. An efficiency of 18.3% has been independently confirmed without any post-deposition annealing or light soaking.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Taux conversion</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Conversion rate</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Factor conversión</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Coût production</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Production cost</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Coste producción</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Cellule solaire</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Solar cell</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Célula solar</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Couche tampon</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Buffer layer</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Capa tampón</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Evaluation performance</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Performance evaluation</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Evaluación prestación</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Recuit</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Annealing</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Recocido</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Eclairement</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Illumination</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Alumbrado</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Hétérojonction</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Heterojunction</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Heterounión</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Système tampon</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Buffer system</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Sistema amortiguador</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Zinc</s0>
<s2>NC</s2>
<s5>22</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Zinc</s0>
<s2>NC</s2>
<s5>22</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Zinc</s0>
<s2>NC</s2>
<s5>22</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Séléniure d'indium</s0>
<s2>NK</s2>
<s5>23</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Indium selenides</s0>
<s2>NK</s2>
<s5>23</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Séléniure de cuivre</s0>
<s2>NK</s2>
<s5>24</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Copper selenides</s0>
<s2>NK</s2>
<s5>24</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Séléniure de gallium</s0>
<s2>NK</s2>
<s5>25</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Gallium selenides</s0>
<s2>NK</s2>
<s5>25</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Composé quaternaire</s0>
<s5>26</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Quaternary compound</s0>
<s5>26</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Compuesto cuaternario</s0>
<s5>26</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Oxyde de zinc</s0>
<s5>27</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Zinc oxide</s0>
<s5>27</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Zinc óxido</s0>
<s5>27</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Sulfure de zinc</s0>
<s5>28</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Zinc sulfide</s0>
<s5>28</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Zinc sulfuro</s0>
<s5>28</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Verre</s0>
<s5>29</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Glass</s0>
<s5>29</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Vidrio</s0>
<s5>29</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Molybdène</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>30</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Molybdenum</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>30</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Molibdeno</s0>
<s2>NC</s2>
<s2>FX</s2>
<s5>30</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Cuivre</s0>
<s2>NC</s2>
<s5>31</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Copper</s0>
<s2>NC</s2>
<s5>31</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Cobre</s0>
<s2>NC</s2>
<s5>31</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Couche mince</s0>
<s5>32</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Thin film</s0>
<s5>32</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Capa fina</s0>
<s5>32</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Cu(In,Ga)Se2</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>ZnO</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>ZnS</s0>
<s4>INC</s4>
<s5>84</s5>
</fC03>
<fN21>
<s1>041</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000082 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000082 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:14-0038063
   |texte=   Junction formation by Zn(O,S) sputtering yields CIGSe-based cells with efficiencies exceeding 18%
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024